Rational Structure-Based Rescaffolding Approach to de Novo Design of Interleukin 10 (IL-10) Receptor-1 Mimetics


Rational Structure-Based Rescaffolding Approach to de Novo Design of Interleukin 10 (IL-10) Receptor-1 Mimetics

Ruiz-Gómez, G.; Hawkins, J. C.; Philipp, J.; Künze, G.; Wodtke, R.; Löser, R.; Fahmy, K.; Pisabarro, M. T.

Tackling protein interfaces with small molecules capable of modulating protein-protein interactions remains a challenge in structure-based ligand design. Particularly arduous are cases in which the epitopes involved in molecular recognition have a non-structured and discontinuous nature. Here, the basic strategy of translating continuous binding epitopes into mimetic scaffolds cannot be applied, and other innovative approaches are therefore required. We present a structure-based rational approach involving the use of a novel customized PROSITE-based regular expression syntax to define minimal descriptors of geometric and functional constraints signifying relevant unctionalities for recognition in protein interfaces of non-continuous and unstructured nature. These descriptors feed a search engine that explores the currently available three-dimensional chemical space of the Protein Data Bank (PDB) in order to identify in a straightforward manner regular architectures containing the desired functionalities, which could be used as templates to guide the rational design of small natural-like scaffolds mimicking the targeted recognition site. The application of this rescaffolding strategy to the discovery of natural scaffolds incorporating a selection of functionalities of interleukin-10 receptor-1 (IL-10R1), which are relevant for its interaction with nterleukin-10 (IL-10) has resulted in the de novo design of a new class of potent IL-10 peptidomimetic ligands.

Keywords: de novo design; peptidomimetics; IL-10 receptor mimetic; 3D functional descriptors; proteinprotein interactions

Permalink: https://www.hzdr.de/publications/Publ-23528