Tunnelling magnetoresistance of the half-metallic compensated ferrimagnet Mn2RuxGa


Tunnelling magnetoresistance of the half-metallic compensated ferrimagnet Mn2RuxGa

Borisov, K.; Betto, D.; Lau, Y. C.; Fowley, C.; Titova, A.; Thiyagarajah, N.; Atcheson, G.; Lindner, J.; Deac, A. M.; Coey, J. M. D.; Stamenov, P.; Rode, K.

Tunnel magnetoresistance ratios of up to 40% are measured between 10K and 300K when the highly spin-polarized compensated ferrimagnet, Mn2RuxGa, is integrated into MgO-based perpendicular magnetic tunnel junctions. Temperature and bias dependences of the tunnel magnetoresistance effect, with a sign change near −0.2 V, reflect the structure of the Mn2RuxGa interface density of states. Despite magnetic moment vanishing at a compensation temperature of 200K for x ≈ 0.8, the tunnel magneto resistance ratio remains non-zero throughout the compensation region, demonstrating that the spin-transport is governed by one of the Mn sub-lattices only. Broad temperature range magnetic field immunity of at least 0.5T is demonstrated in the same sample. The high spin polarization and perpendicular magnetic anisotropy make Mn2RuxGa suitable for applications in both non-volatile magnetic random access memory cells and terahertz spin-transfer oscillators.

Keywords: Tunneling Magnetoresistance; Half-Metal; Mn-based alloys; MRAM; Spin Polarisation; Heusler alloy; Ferrimagnetic; Perpendicular Magnetic Anisotropy

Permalink: https://www.hzdr.de/publications/Publ-23559