Complexation studies of modified calix[4]arenes with uranium in non-aqueous solution


Complexation studies of modified calix[4]arenes with uranium in non-aqueous solution

Bauer, A.; Schmeide, K.; März, J.; Jäschke, A.; Glasneck, F.; Kersting, B.

The actinide uranium, well known from nuclear power cycle, plays also a role in rare earth production. The rare earth ores contain, apart from various other components, the actinides uranium and thorium occur as undesired constituents. To facilitate the production of rare earth elements, uranium and thorium have to be removed. Due to their modifiable selectivity and solubility calix[n]arenes are interesting compounds for the extraction of actinides and lanthanides. The chalice-like macrocyclic molecules consist of para-substituted phenolic units. The para-substitution determines the solubility of the molecule and the hydroxyl groups serve either directly as complexation site or can be further functionalized to adjust the selectivity of the calix[n]arene.
Several calix[4]arenes with affinity towards actinides or lanthanides are available. These are to be applied to eliminate uranium (IV)/(VI) and thorium from ore concentrates and subsequently, to separate lanthanides. The separation method based on liquid-liquid extraction utilizing the calix[4]arenes. Thereby metal calix[4]arene complexes are formed in the organic phase. For better process understanding we investigated the mechanisms of uranium interaction with the synthesized calix[4]arenes by UV-Vis spectroscopy, TRLFS, isothermal titration calorimetry, single crystal XRD and extraction experiments. The calix[4]arene modified with 8-hydroxychinolin derivatives called L1 is one of the new calix[4]arenes. It achieves a U(VI) extraction yield between 90 to 100 % in the pH range of 4 to 9. It possesses two potential binding sites for U(VI). Stoichiometry determination by the Job´s Plot from UV-Vis data indicates a ligand to metal ratio of 1:2 (Fig. 1). The calix[4]arene-L1 complex absorbs at 280 nm. During spectrophotometric titration of L1 with U(VI) in acetonitrile the absorption maximum decreases and new peaks at 318, 360 and 525 nm occur. Luminescence signals of L1 and uranyl nitrate in acetonitrile are weakened by complex formation. First microcalorimetric measurements confirm the binding of two metal ions by L1. All measurements in solution were carried out at 25°C. In addition to the UV-Vis spectroscopy and isothermal titration calorimetry, the capillary electrophoresis is to be used for determining stability constants.
Whereas in solution a stoichiometry of 1:2 is obviously preferred, the single crystal XRD analysis reveals a formation of a 1:1 U(VI)-L1 complex (Fig. 2). Thereby the hexavalent uranyl ion is coordinated by the singly deprotonated ligand via a N2O2 donor set. The charge is compensated by an additional coordinated nitrate ion. To complete the structure information of the formed U(VI)-L1 complex in solution mass spectrometric and NMR measurements as well as theoretical studies are currently performed. In addition, for better understanding the complexation properties of L1 the interaction with U(IV) and Th(IV) is studied.

Keywords: SE-FLECX; calix[4]arene; uranium; solvent extraction; complexation studies; rare earth production

  • Poster
    The 9th Conference on Nuclear and Radiochemistry – NRC9, 29.08.-02.09.2016, Helsinki, Finnland

Permalink: https://www.hzdr.de/publications/Publ-23671