Redox Stability of Uranium in High Ionic Strength Media: An Electrochemical and Spectroscopic Study


Redox Stability of Uranium in High Ionic Strength Media: An Electrochemical and Spectroscopic Study

Lehmann, S.; Bok, F.; Ikeda-Ohno, A.; Muñoz, A. G.

Knowledge of redox behavior of uranium in concentrated solutions of the hexary oceanic salt system is essential for the transport modeling of radioactive nuclides in repositories for the long-term disposal of radioactive wastes in rock salt formations. Especially critical is the behavior of the couple U(IV)/U(VI) in the surrounding high ionic strength saline milieu, which regulates the release of mobile U(VI) species at given redox conditions defined by the presence of trace oxygen. The redox potential (Eredox) and the solubility in brines in particular implicate the activity of the different ligand- and hydroxo-complexes (ai): Eredox = f(mi, ai, βj), where βj is the complexation constant. Thus, the prediction of transport behavior of uranium at given chemical environments needs appropriate complexation and thermodynamic models assuming the ionic activities beyond the limited Debye-Hückel theory. This latter is supplied by the Pitzer formulation [1], where deviations from the limit Debye-Hückel behavior are given by specific interaction parameters among the constituting ionic species, which have to be determined experimentally.
The kinetics of the electrochemical reduction and oxidation reactions was studied in a three-electrodes type cell using a Au working electrode, Pt wire counter electrode and a Ag/AgCl in3 M KCl reference electrode. Experiments were performed under an oxygen-free atmosphere in a glove-box. Cyclic voltammetry (CV) and normal pulse voltammetry (NPV) were applied to investigate the influence of chloride concentrations in the kinetics parameters, such as reaction rate, k, and the diffusion coefficient in solutions containing U(VI) or U(IV) in HCl solutions from 0.1 to 1.3 M. The solution speciation of uranium was investigated by UV/vis absorption spectroscopy.
Reference: [1] K.S. Pitzer in Activity coefficients in electrolyte solutions, Ch.3, CRC Press, Boca Raton, Florida, 1991.

Keywords: uranium; saline solutions; electrochemistry; redox behaviour; Pitzer

  • Lecture (Conference)
    PRIME 2016 - Pacific rim meeting on electrochemical and solid-state science, 02.-07.10.2016, Honolulu, Hawaii, USA

Permalink: https://www.hzdr.de/publications/Publ-23674