Enhancement of carrier mobility in thin Ge layer by Sn co-doping


Enhancement of carrier mobility in thin Ge layer by Sn co-doping

Prucnal, S.; Liu, F.; Berencén, Y.; Vines, L.; Bischoff, L.; Grenzer, J.; Andric, S.; Tiagulskyi, S.; Pyszniak, K.; Turek, M.; Drozdziel, A.; Helm, M.; Zhou, S.; Skorupa, W.

We present the development, optimization and fabrication of high carrier mobility materials based on GeOI wafers co-doped with Sn and P. The Ge thin films were fabricated using plasmaenhanced chemical vapour deposition followed by ion implantation and explosive solid phase epitaxy, which is induced by millisecond flash lamp annealing. The influence of the recrystallization mechanism and co-doping of Sn on the carrier distribution and carrier mobility both in n-type and p-type GeOI wafers is discussed in detail. This finding significantly contributes to the state-of-the-art of high carrier mobility-GeOI wafers since the results are comparable with GeOI commercial wafers fabricated by epitaxial layer transfer or SmartCut technology.

Keywords: GeOI; flash lamp annealing; ion implantation; explosive recrystallization

Involved research facilities

Related publications

Downloads

Permalink: https://www.hzdr.de/publications/Publ-24338