Digitalizing the Circular Economy - The role of process metallurgical systems


Digitalizing the Circular Economy - The role of process metallurgical systems

Reuter, M. A.

Metallurgy is a key enabler of a Circular Economy (CE), its digitalization the metallurgical Internet-of-Things (m-IoT). In short: Metallurgy is at the heart of a CE as metals all have strong intrinsic recycling potentials.Process metallurgy as a key enabler for a CE will help much to deliver its goals. The first principles models of process engineering help quantify the Resource Efficiency (RE) of the CE system, connecting all stakeholders via digitalization. This provides well-argued and first principles environmental information to empower tax paying consumer society, policy, legislators and environmentalists. It provides the details to detail Capital and Operational Expenditure (CAPEX & OPEX) estimates. Through this path the opportunities and limits of a CE, recycling and its technology can be estimated. The true boundaries of sustainability can be determined in addition to the techno-economic evaluation of RE.The digital integration of metallurgical reactor technology and systems, not only on one site but linking different sites globally via hardware, is the basis for describing CE systems as dynamic feedback control loops i.e. the metallurgical Internet of Things (m-IoT). It is the linkage of the global carrier metallurgical processing system infrastructure, that maximizes the recovery of all minor and technology elements in its associated refining metallurgical infrastructure. This will be illustrated through:

System optimization models for multi-metal metallurgical processing. These map large scale m-IoT systems, which link to Computer Aided Design (CAD) tools of the Original Equipment Manufacturers (OEMs), and then establish a recycling index (RI) through the quantification of RE.
Reactor optimization and industrial system solutions to realize the “CE (within a) Corporation - CEC”; realizing the CE of society.
Real-time measurement of ore and scrap properties in intelligent plant structures, linked to the modelling, simulation and optimization of industrial extractive process metallurgical reactors and plants for both primary and secondary materials processing.
Big-data analysis and process control of industrial metallurgical systems, processes and reactors by the application of among others artificial intelligence (AI) techniques and computer aided engineering (CAE).
Minerals processing and process metallurgical theory, technology, simulation and analytical tools, which are all key enablers of the CE.
Visualizing the results of all the tools used for estimating the RE of the CE system in a form that the consumer and general public can understand.
The smart integration of tools and methods that quantify RE and deliver sustainable solutions, named in this paper Circular Economy Engineering (CEE).

  • Invited lecture (Conferences)
    Fostering a synergistic environment in engineering simulation, 17.-18.10.2016, Parma, Italien

Permalink: https://www.hzdr.de/publications/Publ-24512