beta1 integrin/JNK co-deactivation effectively targets adhesion- and stress-related adaptation radiochemoresistance in glioblastoma


beta1 integrin/JNK co-deactivation effectively targets adhesion- and stress-related adaptation radiochemoresistance in glioblastoma

Vehlow, A.; Klapproth, E.; Storch, K.; Dickreuter, E.; Seifert, M.; Dietrich, A.; Bütof, R.; Temme, A.; Cordes, N.

Background: The poor prognosis of patients suffering from Glioblastoma multiforme (GBM) is mainly basedon therapy resistances of GBM stem- and tumor bulk cells and their invasive growth within the brain. Neglected are therapy-induced adaptation mechanisms. Here, we blocked bypass mechanisms simultaneously to radiochemotherapy by targeting the pro-survival beta1 integrins and the stress-related c-Jun N-terminal kinases (JNK) and evaluated the effectiveness of this strategy on GBM radiochemosensitization and invasion in vitro and in vivo.
Methods: An Oncomine database analysis was conducted to compare the expression of JNK, beta1 integrin and collagen type-I in GBM and brain. The clonogenic survival and the invasion of human GBM cell lines (U343-MG, T4), GBM stem-like (GS-8) and patient-derived cells (DK32, DK41) was quantified upon irradiation (0-6 Gy X-ray) in 2- and 3-dimensional collagen type-I matrix. On top of this treatment, beta1 integrins (AIIB2) and JNK (SP600125, siRNA) were inhibited in a single or dual manner. The effect of a combined beta1 integrin/JNK inhibition on tumor growth and survival was evaluated in orthotopic GBM mice treated with radiochemotherapy. Furthermore, underlying changes of cellular signaling cascades (phosphoproteome array), cell cycle (FACS), DNA damage (53BP1) and chromatin organization were evaluated upon beta1 integrin/JNK co-targeting.
Results: Oncomine data showed an increased expression of beta1 integrins and collagen type-I in GBM. While neither a single inhibition of beta1 integrins nor JNK reduced cell survival, co-targeting of both molecules induced radiosensitization and blocked cell invasion in all GBM cell populations tested. This treatment effect was promoted by an increased expression of pro-survival beta1 integrin upon JNK inhibition. Moreover, in combination with radiochemotherapy, beta1 integrin/JNK co-inhibition significantly delayed tumor growth in vivo leading to a significant longer survival of orthotopic GBM mice. Mechanistically, the radiosensitization upon beta1 integrin/JNK targeting was attributed to an amplified ATM phosphorylation and G2/M cell cycle arrest, which was accompanied by an increase in 53BP1 foci and euchromatin formation.
Conclusion: Our data show that a combined deactivation of beta1 integrin/JNK efficiently targets adaptation mechanisms and reduces GBM radiochemoresistance and invasion. Further understanding of therapy-induced bypass mechanisms is key for therapy optimization for GBM and other malignancies.

Keywords: GBM; integrin; JNK; radiochemoresistance

  • Contribution to proceedings
    Wolfsberg Meeting, 17.-19.06.2017, Ermatingen, Schweiz

Permalink: https://www.hzdr.de/publications/Publ-25182