Application of computational fluid dynamics (CFD) codes for nuclear power plant design


Application of computational fluid dynamics (CFD) codes for nuclear power plant design

Krause, M.; Smith, B.; Höhne, T.

The nuclear industry recognises that CFD codes have reached the desired level of maturity (at least for single-phase applications) to be used as part of the NPP design process, and it is the objective of this IAEA Coordinated Research Project (CRP) to assess their current capabilities in this regard, and contribute to the technology advance in respect to their verification and validation. Currently, this CRP is ongoing, with participation from 14 member states to address the issue, following a three-pronged approach:

1. Preparation of a Summary Document to put on record the use of CFD in the nuclear reactor design process;
2. Development of (four) detailed, NPP design-oriented CFD benchmark exercises; and
3. Documentation of participants’ CFD simulations of these benchmarks, including the use of best-practice recommendations.
This paper describes the structure of the CRP, the Summary Document, and two of the benchmarks launched. Both benchmarks are related to safety issues in PWRs and are based on completed, but not yet published, measured data from ROCOM facility tests: one related to pressurized thermal shock (PTS) and the other to boron dilution.

Keywords: IAEA; ROCOM; CFD; PTS; CRP; NPP

  • Contribution to proceedings
    IAEA International Conference on Topical Issues in Nuclear Installation Safety, 06.-09.06.2017, Wien, Österreich
  • Lecture (Conference)
    IAEA International Conference on Topical Issues in Nuclear Installation Safety, 06.-09.06.2017, Wien, Österreich

Permalink: https://www.hzdr.de/publications/Publ-25218