Numerical Investigation of Passive Heat Transfer to Ambient for Cooling of Nuclear Spent Fuel Pools


Numerical Investigation of Passive Heat Transfer to Ambient for Cooling of Nuclear Spent Fuel Pools

Unger, S.; Oertel, R.; Hampel, U.

In current power plants is the storage of spent fuel in active cooled water pools standard practice. The reliability of nuclear power plants can be enhanced by substituting the active cooling components by passive heat transfer systems. A promising concept of such systems uses ambient air as an unlimited heat sink. However the major drawback of heat transfer towards air is a low heat transfer coefficients. To overcome this disadvantage a finned tube bundle heat exchanger, promote a natural convection cycle, is numerical investigated and thermohydraulic optimized. The most beneficial fin design on an oval shaped tube heat exchanger as well as a favourable chimney height could be established.

  • Contribution to proceedings
    48th Annual Meeting on Nuclear Technology, 16.-17.05.2017, Berlin, Deutschland
  • Lecture (Conference)
    48th Annual Meeting on Nuclear Technology, 16.-18.05.2017, Berlin, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-25263