60Fe and 244Pu in deep-sea archives - a link to nearby supernova activity and r–process sites


60Fe and 244Pu in deep-sea archives - a link to nearby supernova activity and r–process sites

Wallner, A.; Kinoshita, N.; Feige, J.; Froehlich, M.; Hotchkis, M.; Fifield, L. K.; Golser, R.; Honda, M.; Linnemann, U.; Matsuzaki, H.; Merchel, S.; Paul, M.; Rugel, G.; Schumann, D.; Tims, S. G.; Steier, P.; Yamagata, T.; Winkler, S. R.

The Interstellar Medium (ISM) is continuously fed with new nucleosynthetic products. The solar system moves through the ISM and collects dust particles. Therefore, direct detection of freshly produced radionuclides on Earth, i.e. before decaying, provide insight into recent and nearby nucleosynthetic activities [1,2]. Indeed, a pioneering work at TU Munich [3,4], which applied the ultra-sensitive single atom counting technique of accelerator mass spectrometry (AMS) to an ocean crust-sample, showed an enhanced 60Fe signal possibly of extraterrestrial origin. Within an international collaboration [5-7] we have continued to search for ISM radionuclides incorporated in terrestrial archives. We have analyzed several deep-sea sediments, crusts and nodules for extraterrestrial 60Fe (t1/2=2.6 Myr), 26Al (t1/2=0.7 Myr) and 244Pu (t1/2=81 Myr) [5-8] which are complemented by independent work at TU Munich [9-11]. All the data demonstrate a clear global 60Fe influx that is interpreted as exposure of Earth to recent (≤10 Myr) supernova explosions. Furthermore, the low concentrations measured for 244Pu suggest an unexpectedly low abundance of interstellar 244Pu [5]. This finding signals a rarity of actinide r–process nucleosynthesis which is incompatible with the rate and expected yield of standard core collapse supernovae as the predominant actinide-producing sites. In this talk I will also present additional new results for 60Fe and 244Pu measured with unprecedented sensitivity. These data provide new insights into their concomitant influx and their ISM concentrations over a time period of the last 11 million years.
[1] J. Ellis et al., ApJ. 470, 1227 (1996).
[2] G. Korschinek et al., Radiocarbon 38, 68 (1996); abstract.
[3] K. Knie et al., Phys. Rev. Lett. 83, 18 (1999).
[4] K. Knie et al., Phys. Rev. Lett. 93, 171103 (2004).
[5] A. Wallner et al., Nature Comm. 6, 5956 (2015).
[6] J. Feige et al., EPJ Web of Conf. 63, 3003 (2013).
[7] A. Wallner et al., Nature 532, 69 (2016).
[8] M. Paul M. et al. Astrophys. J. Lett. 558, L133L135 (2001).
[9] C. Wallner et al. New Astron. Rev. 48, 145150 (2004).
[10] L. Fimiani et al., Phys. Rev. Lett. 116, 151104 (2016).
[11] P. Ludwig et al., PNAS 113, 9232 (2016).

Keywords: accelerator mass spectrometry; AMS; supernova

Involved research facilities

Related publications

  • Lecture (Conference)
    Nuclear Physics in Astrophysics 8 (NPA8), 18.-23.06.2017, Catania, Italia

Permalink: https://www.hzdr.de/publications/Publ-25286