Electrically detected magnetic vortex dynamics in Permalloy disks


Electrically detected magnetic vortex dynamics in Permalloy disks

Ramasubramanian, L.; Fowley, C.; Kákay, A.; Yildirim, O.; Matthes, P.; Lindner, J.; Fassbender, J.; Gemming, S.; Schulz, S. E.; Deac, A. M.

The magnetic “vortex” is a potential candidate for future spintronic devices, like frequency sensors [S. Kasai, et al. PRL 97, 107204 (2006)] [R. Moriya, et al. Nat. Phys. 4:368 (2008)], spin torque oscillators [V. S. Pribiag, et al. Nat. Phys. 3:498 (2007)], and tunable magnonic crystals [J. Shibata, et al. PRB 67, 224404 (2003)]. The fundamental frequency is determined by the saturation magnetisation, as well as the geometrical confinement of the magnetisation i.e. the diameter and height of a magnetic disk. In this study, Permalloy disks (with diameters ranging from 1µm to 8µm) are patterned and contacted to study the interaction of spin polarized current on the magnetic vortex. The presence of vortex is verified by magneto optic Kerr effect, X-ray photoemission electron microscopy and magnetotransport measurements. The resonance frequency is measured using a lock-in technique based on the anisotropic magnetoresistance effect. Modification of the resonance frequency by ion irradiation will be presented.

Keywords: magnetic vortex; dynamics; electrical detection

Involved research facilities

Related publications

  • Lecture (Conference)
    DPG-Frühjahrstagung 2017, 19.-24.03.2017, Dresden, Germany

Permalink: https://www.hzdr.de/publications/Publ-25377