Including Atomic Physics in Simulations of Transient Plasma Processes with PIConGPU & simex_platform


Including Atomic Physics in Simulations of Transient Plasma Processes with PIConGPU & simex_platform

Huebl, A.; Garten, M.; Chung, H.-K.; Vorberger, J.; Kluge, T.; Bussmann, M.

Particle-in-Cell (PIC) codes are the the working horses of computational modeling in plasma physics, as they describe even the most turbulent kinetic processes from first-principles. But great applicability comes with great computational demand, requiring leadership-scale HPC systems in order to model full 3D geometries with solid-density. This poster shows the open software architecture of the world's fastest PIC code PIConGPU which is addressing these demands for the community. With a blazingly short time-to-solution, GPU-powered high-performance computing opens unique opportunities for studying transient plasma processes, e.g. by including XFEL photon distributions from simex_platform. Trading speed for enhanced predictive capabilities, we including collisional-radiative non-LTE models from SCFLY into the electro-magnetic PIC cycle.

Keywords: PIC modeling transient plasma GPU laser-matter non-LTE collisional-radiative PIConGPU

  • Poster
    EUCALL Annual Meeting 2017, 07.-09.06.2017, Grenoble, Frankreich

Permalink: https://www.hzdr.de/publications/Publ-25619