Backscattering Spectrometry with Ultimate Lateral Resolution: keV Nanoprobes vs. MeV Microprobes


Backscattering Spectrometry with Ultimate Lateral Resolution: keV Nanoprobes vs. MeV Microprobes

Klingner, N.; Heller, R.; Hlawacek, G.; Munnik, F.; Facsko, S.

Rutherford Backscattering Spectrometry with a MeV nuclear microprobe is a versatile tool for compositional and structural analysis in material science, micro-electronics and geology. The continuous shrinking of object dimensions lead to an enhanced demand on spatial resolution and surface sensitivity of modern analysis techniques.
Microprobe setups have been optimized for small beam spots below 1 µm, large solid angles and good energy resolution [1]. However, their performance is limited by the ion source’s brightness and the corresponding beam spot size, sample damage, as well as by the interaction volume of the incident ions.
Recently, we implemented Time-of-Flight Backscattering Spectrometry into a Helium Ion Microscope [2, 3]. The enormous brightness of its Gas Field Ionization Source and the sharp primary ion energy of 30 keV enable an ion beam focus below 1 nm. Due to this very small probe size the achievable lateral resolution for bulk samples is limited by sample damage and the size of the collision cascade.
Different binary collision codes were utilized to simulate the ion-solid interaction for various beam and sample parameters. The origin of backscattered particles, surface sputtering and the intermixing behavior has been studied.
In this contribution we will discuss which primary ion energy, ion species and setup can reach ultimate lateral resolution in Backscattering Spectrometry. Besides simulation results and considerations about advantages and disadvantages we will show practical examples of both - classical MeV nuclear microprobes and focused ion beam keV nanoprobes.

[1] N.Klingner, J.Vogt, D.Spemann, NIMB 306, 44 (2013).
[2] N.Klingner, R.Heller, G.Hlawacek, J.vonBorany, J.Notte, J.Huang, S.Facsko, Ultramicroscopy 162, 91 (2016).
[3] R.Heller, N.Klingner, G.Hlawacek. Helium Ion Microscopy, Chapter 12, Springer International Publishing 2016, ISBN 978-3-319-41988-6

Involved research facilities

Related publications

  • Poster
    23rd International Conference on Ion Beam Analysis IBA-2017, 08.-13.10.2017, Shanghai, China

Permalink: https://www.hzdr.de/publications/Publ-25668