Elastic moduli of the distorted Kagome-lattice ferromagnet Nd3Ru4Al12


Elastic moduli of the distorted Kagome-lattice ferromagnet Nd3Ru4Al12

Suzuki, T.; Mizuno, T.; Takezawa, K.; Kamikawa, S.; Andreev, A. V.; Gorbunov, D. I.; Henriques, M. S.; Ishii, I.

The distorted kagome-lattice compound Nd3Ru4Al12 has the hexagonal structure. This compound is reported as a ferromagnet in which spins are aligned along the c-axis with the Curie temperature Tc = 39 K. The nature of localized f-electrons is expected in Nd3Ru4Al12, and magnetic anisotropy can be attributed to a crystal electric field (CEF) effect. We performed ultrasonic measurements on a Nd3Ru4Al12 single-crystalline sample in order to investigate the phase transition at TC and the CEF effect. All longitudinal and transverse elastic moduli increase monotonically with decreasing temperature, and no clear elastic softening due to a quadrupole interaction is detected under the hexagonal CEF. This result is in contrast to an isomorphic compound Dy3Ru4Al12 with a remarkable elastic softening of the transverse modulus C44. At the ferromagnetic phase transition, the moduli show obvious elastic anomalies, suggesting characteristic couplings between a strain and a magnetic order parameter.

Involved research facilities

  • High Magnetic Field Laboratory (HLD)

Permalink: https://www.hzdr.de/publications/Publ-26351