Energy balance of the carbon dioxide injection facility in Ketzin, Germany


Energy balance of the carbon dioxide injection facility in Ketzin, Germany

Wiese, B. U.; Nimtz, M.

Injection of 67 kt carbon dioxide was carried out between 2008 and 2013 at the test site for geological storage in
Ketzin, Germany. The source carbon dioxide was delivered in liquid phase. The injection facility has had a three
step process chain: (i) pressure increase by a liquid pump, (ii) temperature increase by ambient air vaporizers
and (iii) temperature increase by an electrical vaporizer including phase change to gaseous conditions. The
ambient vaporizers reduced electrical power demand but the weather dependence induced some kind of uncertainty,
further their power could not be measured. In the cases when the carbon dioxide was evaporated
within the ambient vaporizers, the heat demand increased such that the driving temperature was not enough for
full vaporization. However, the gas to liquid ratio is unknown wherefore the heating power can not be calculated
over the ambient vaporizer. This is addressed, as the electric energy consumption was most reduced during the
two phase operation.
For these intervals, two phase gas–liquid conditions prevailed in the pipeline. Unlike conjectured, flow
conditions remained stable and did not vary significantly from single phase behavior. The current work – for the
first time – presents a detailed analysis of energy input and losses of the carbon dioxide injection process based
on field data and simulations. A modified process chain is proposed to switch the electric energy demand to an
ambient heat source, reducing the electrical energy use per ton carbon dioxide by up to 90 %. The work provides
insight for planning future injection devices that involve liquid carbon dioxide in the process chain.

Keywords: CCS; Injection facility; Storage; Carbon dioxide; Ketzin; Ambient air heat exchanger; Vaporization

Permalink: https://www.hzdr.de/publications/Publ-26368