High-pressure chemistry of hydrocarbons relevant to planetary interiors and inertial confinement fusion


High-pressure chemistry of hydrocarbons relevant to planetary interiors and inertial confinement fusion

Kraus, D.; Hartley, N. J.; Frydrych, S.; Schuster, A. K.; Rohatsch, K.; Brown, S.; Cowan, T. E.; Cunningham, E.; Demaio-Turner, S. J.; van Driel, T.; Fletcher, L. B.; Galtier, E.; Gamboa, E. J.; Laso Garcia, A.; Gericke, D. O.; Granados, E.; Heimann, P. A.; Lee, H. J.; Macdonald, M. J.; Mackinnon, A. J.; Mcbride, E. E.; Nam, I.; Neumayer, P.; Pak, A.; Pelka, A.; Prencipe, I.; Ravasio, A.; Redmer, R.; Rödel, M.; Saunders, A. M.; Schölmerich, M.; Schörner, M.; Sun, P.; Falcone, R. W.; Glenzer, S. H.; Döppner, T.; Vorberger, J.

Diamond formation in polystyrene (C8H8)n, which is laser-compressed and heated to conditions around 150 GPa and 5,000 K, has recently been demonstrated in the laboratory [D. Kraus et al., Nat. Astron. 1, 606-611 (2017)]. Here we show an extended analysis of the acquired data and their implications for planetary physics and inertial confinement fusion. Moreover, we discuss the advanced diagnostic capabilities of adding high-quality small angle X-ray scattering and spectrally resolved X-ray scattering to the platform, which shows great prospects of precisely studying the kinetics of chemical reactions in dense plasma environments at pressures exceeding 100 GPa.

Permalink: https://www.hzdr.de/publications/Publ-26430