Optical probing of high intensity laser interaction with micron-sized cryogenic hydrogen jets


Optical probing of high intensity laser interaction with micron-sized cryogenic hydrogen jets

Ziegler, T.; Rehwald, M.; Obst, L.; Bernert, C.; Brack, F.; Curry, C. B.; Gauthier, M.; Glenzer, S. H.; Göde, S.; Kazak, L.; Kraft, S. D.; Kuntzsch, M.; Loeser, M.; Metzkes-Ng, J.; Rödel, C.; Schlenvoigt, H.-P.; Schramm, U.; Siebold, M.; Tiggesbäumker, J.; Wolter, S.; Zeil, K.

Probing the rapid dynamics of plasma evolution in laser-driven plasma interactions provides deeper understanding of experiments in the context of laser-driven ion acceleration and facilitates the interplay with complementing numerical investigations. Besides the microscopic scales involved, strong plasma (self-)emission, predominantly around the harmonics of the driver laser, often complicates the data analysis. We present the concept and the implementation of a stand-alone probe laser system that is temporally synchronized to the driver laser, providing probing wavelengths beyond the harmonics of the driver laser. The capability of this system is shown during a full-scale laser proton acceleration experiment using renewable cryogenic hydrogen jet targets. For further improvements, we studied the influence of probe color, observation angle of the probe and temporal contrast of the driver laser on the probe image quality.

Keywords: plasma diagnostic probes; laser-produced plasmas; plasma diagnostic; particle accelerator ion sources

Permalink: https://www.hzdr.de/publications/Publ-26460