Functionalized DNA Origami Mold Nanostructures for Molecular Electronics


Functionalized DNA Origami Mold Nanostructures for Molecular Electronics

Bayrak, T.; Ye, J.; Helmi, S.; Teschome, B.; Schonherr, T.; Seidel, R.; Erbe, A.

The DNA origami method provides a programmable bottom-up approach for creating nanostructures of any desired shape, which can be used as scaffolds for nanoelectronics and nanophotonics device fabrications. This technique enables the precise positioning of metallic and semiconducting nanoparticles along the DNA nanostructures. In this study, DNA origami molds are used for the fabrication of nanoelectronic devices. To this end, electroless gold deposition is used to selectively grow the AuNPs and create eventually continues nanowires within the DNA origami molds. In order to investigate the transport properties of the so-fabricated nanostructures, a method is developed using electron beam lithography and 1D DNA origami-based metallic wires were electrically characterized from room temperature to 4.2K. Additionally, the assembly of heterogeneous nanostructures, i.e. AuNPs and semiconductor quantum dots (QDs), on a single DNA origami structure is demonstrated and further metalized, thus representing a first step toward the future fabrication of DNA origami-templated quantum dot transistors.

Keywords: DNA Origami; Charge Transport; Low Temperature Electrical Characterization

Involved research facilities

Related publications

  • Lecture (Conference)
    2017 MRS Fall Meeting, 26.11.-01.12.2017, Boston, United States of America

Permalink: https://www.hzdr.de/publications/Publ-26467