Laser-proton acceleration from a condensed hydrogen jet


Laser-proton acceleration from a condensed hydrogen jet

Rehwald, M.; Zeil, K.; Obst, L.; Metzkes, J.; Schlenvoigt, H.; Goede, S.; Kraft, S. D.; Brack, F.; Wolter, S.; Kazak, L.; Gauthier, M.; Roedel, C.; Kluge, T.; Fiuza, F.; Mishra, R.; Ruyer, C.; Sommer, P.; Loeser, M.; Ziegler, T.; Curry, C.; Macdonald, M.; Schumaker, W.; Glenzer, S.; Cowan, T.; Schramm, U.

Applications like radiation therapy of cancer have pushed the development of laser plasma accelerators and defined levels of control and necessary particle beam stability in laser plasma experiments. The poster will give an overview of a recent experiment for laser driven particle acceleration with high contrast at the high power laser Draco at HZDR, delivering pulses of 30fs and 5J. We present results of an experimental campaign employing a cryogenic hydrogen jet as a renewable target. The jet's nominal plasma density is approximately 30 times the critical density and its diameter can be varied to be 2µm, 5µm or 10µm and thus allowing to study the regime of relativistic transparency. In addition a planar aperture was commissioned, providing a different geometry of the hydrogen jet. Different ion diagnostics reveal mono-species proton acceleration in the laser incidence plane around the wire-like target. Radiochromic film stacks in laser forward direction display filament-like structures, stemming from a Weibel-like instability generated at the rear side of the target. Furthermore the micro-jet target could be monitored on-shot with a temporally synchronized optical probe beam perpendicular and almost parallel to the pump laser axis. Recorded probe images taken on a timescale of several 10’s of picoseconds indicating plasma density modulations from pinching effects along the jet axis.

Keywords: laser particle acceleration; optical probing; plasma instabilities

  • Poster
    3. Annual MT Meeting, 31.01.-02.02.2017, GSI Darmstadt, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-26562