Hyperdoping silicon with tellurium for optoelectronics


Hyperdoping silicon with tellurium for optoelectronics

Wang, M.; Berencén, Y.; Prucnal, S.; Hübner, R.; Yuan, Y.; Xu, C.; Rebohle, L.; Böttger, R.; Heller, R.; Schneider, H.; Skorupa, W.; Helm, M.; Zhou, S.

Chalcogen-hyperdoped silicon has been a topic of great interest due to its potential optoelectronic applications owing to the sub-band gap absorption [1-3]. In our work, tellurium hyperdoped Si was fabricated by ion-implantation with different fluences ranging from 1.09×1015 to 1.25×1016 cm-2 followed by pulsed laser melting (PLM). The Rutherford backscattering spectrometry / Channeling (RBS/C) results reveal the high-quality recrystallization of tellurium implanted silicon by PLM. From the transport measurements, an insulator-to-metal transition is observed with increasing tellurium concentration. Moreover, the ellipsometry measurements show that the band gap narrows with increasing tellurium doping concentration. And the Fourier transform infrared (FTIR) spectroscopy show that tellurium hyperdoped Si has strong infrared absorption. This gives us a signal that hyperdoped silicon with tellurium could enable silicon-based optoelectronics in the infrared band.

Keywords: Hyperdoping; pulsed laser melting (PLM); silicon; optoelectronics

Involved research facilities

Related publications

  • Poster
    19th International Conference on Radiation Effects in Insulators, 02.-07.07.2017, Versailles, France

Permalink: https://www.hzdr.de/publications/Publ-26795