Defect induced magnetism in SiC characterized by magnetometry


Defect induced magnetism in SiC characterized by magnetometry

Zhou, S.

Silicon carbide (SiC) is a wide band-gap semiconductor with unique mechanical, electrical, and thermal properties, which make the material suitable for many demanding applications in extreme conditions, such as high temperature, high power, high frequency and high radiation exposure. The spin states related with defects in SiC can be optically addressed and coherently controlled up to room temperature [1] or can be ferromagnetically coupled [2, 3], opening the door for semiconductor spintronics and quantum computing.



In this contribution, we present a comprehensive investigation on defects in SiC by using magnetometry [2-6]. In combination with X-ray absorption spectroscopy, high-resolution transmission electron microscopy and first-principles calculations, we try to understand the mechanism of defect induced magnetism in SiC in a microscopic picture.



For neon or xenon ion implanted SiC, we identify a multi-magnetic-phase nature [3, 4]. The magnetization of SiC can be decomposed into paramagnetic, superparamagnetic and ferromagnetic contributions. The ferromagnetic contribution persists well above room temperature and exhibits a pronounced magnetic anisotropy. By combining X-ray magnetic circular dichroism and first-principles calculations, we clarify that p-electrons of the nearest-neighbor carbon atoms around divacancies are mainly responsible for the long-range ferromagnetic coupling [5]. Thus, we provide a correlation between the collective magnetic phenomena and the specific electrons/orbitals.



For neutron irradiated SiC, we observe a strong paramagnetism, scaling up with the neutron fluence [6]. A weak ferromagnetic contribution only occurs in a narrow fluence window or after annealing. The interaction between the nuclear spin and the paramagnetic defect can effectively tune the spin-lattice relaxation time (T1) as well as the nuclear spin coherent time (T2). For the sample with the largest neutron irradiation fluence, T1 and T2 are determined to be around 520 s and 1 ms at 2K, respectively.



[1] W. Koehl, et al., Nature 479, 84 (2011).

[2] Y. Liu, et al., Phys. Rev. Lett. 106, 087205 (2011).

[3] L. Li, et al., Appl. Phys. Lett. 98, 222508 (2011).

[4] Y. Wang, et al., Phys. Rev. B 89, 014417 (2014).

[5] Y. Wang, et al., Scientific Reports, 5, 8999 (2015).

[6] Y. Wang, et al., Phys. Rev. B 92, 174409 (2015).

Involved research facilities

Related publications

  • Lecture (Conference)
    2017 MRS SPRING MEETING, 17.-21.04.2017, Phoenix, US

Permalink: https://www.hzdr.de/publications/Publ-26819