Ion beam based methods for materials research and investigation of pipe organ metallic materials


Ion beam based methods for materials research and investigation of pipe organ metallic materials

Skorupa, W.; Pelic, B.; Werner, H.; Eule, D.

Pipe organ instruments contain mostly a considerable number of metallic pipes (flute and reed types), which are sometimes prone to heavy corrosion attack, resulting finally in a loss of their voice. Under certain conditions, the atmospheric corrosion of reed pipe tongues as well as flute pipe foots consisting of Cu-Zn alloys (brass) and PbSn-based alloys, respectively, is strongly enhanced by traces of volatile organic compounds (especially acetic acid vapor) and other corrosive gases.
Experiments have been undertaken to explore the corrosion resistance of CuZn and PbSn-based alloys against vapour from an aqueous solution containing high acetic acid concentration (2 – 5 v/v%), by deposition of protective films of either Al2O3 or Al on the nanoscale using pulsed laser deposition (PLD) and magnetron sputtering (MS). Afterwards, in order to improve the adhesion between the deposited layer and the substrate as well as to perform a kind of nitridation of the coatings, the samples were implanted with nitrogen ions using the plasma immersion ion implantation (PI3) process. Such a nanoscale coating (~50 nm) is then able to withstand stresses and vibrations due to sound generation in organ pipes. Moreover it produces a barrier to volatile organic acids and water vapour. The laboratory corrosion test of the applied protective treatment for lead-tin and brass samples were combined with the field work studies to approach the best conditions for the samples research in real environment.
Moreover, ion beam analysis with the Rossendorf external beam facility was used to determine corrosion products on extremely valuable organ pipes from the early 18th century of the famous organ builder Gottfried Silbermann.

Keywords: Ion beam based methods; pipe organ; brass; lead-tin-alloys; antocorrosive protection; plasma immersion ion implantation; nitridation; pulsed laser deposition; magnetron sputtering

Involved research facilities

Related publications

  • Lecture (Conference)
    20th International Conference on Surface Modification of Materials by Ion Beams, 09.-14.07.2017, Lisboa, Portugal

Permalink: https://www.hzdr.de/publications/Publ-26854