Research facility for radiobiological studies at the University Proton Therapy Dresden


Research facility for radiobiological studies at the University Proton Therapy Dresden

Beyreuther, E.; Baumann, M.; Enghardt, W.; Helmbrecht, S.; Karsch, L.; Krause, M.; Pawelke, J.; Schreiner, L.; Schürer, M.; von Neubeck, C.

Purpose: In order to take full advantage of proton radiotherapy the biological effect of protons in normal and tumor tissue as well as the interaction with concomitant therapies should be investigated and understood in detail. Dedicated and systematic in vitro trials are needed to resolve the underlying mechanisms and processes that are necessary to prepare the translation into the clinics. For this purpose, a setup for radiobiological studies and the corresponding dosimetry should be established that enables in vitro experiments at a horizontal proton beam and, as a reference, a clinical 6 MV photon linear accelerator (Linac).
Methods and results: The experimental proton beam is characterized by high beam availability and reliability throughout the day in parallel to patient treatment. For cell irradiation, a homogeneous 10 × 10 cm² proton field with an optional spread-out Bragg-peak can be formed. A water-filled phantom was installed that allows for precise positioning of different cell sample geometries along the proton path. The depth-dose profiles within the phantom and the dose homogeneity over different cell samples were characterized for the proton beam and the photon reference source. A daily quality assurance protocol was implemented that provides absolute dose information required for significant and reproducible in vitro trials.
Conclusion: In the experimental room of the University Proton Therapy Dresden, clinically relevant conditions for proton in vitro experiments have been realized. The established cell phantom and dosimetry, which facilitate irradiation in an aqueous environment, could easily be transferred to other proton, photon or even ion accelerators. Precise positioning and easy exchange of cell samples, monitor unit-based dose delivery, and high beam availability allow for systematic in vitro trials. The close vicinity to the radiotherapy and radiobiology departments provides access to a clinical linacs as well as the interdisciplinary basis for further translational steps.

Permalink: https://www.hzdr.de/publications/Publ-26857