Effect of Strong Load Variations on Gain and Timing of CeBr3 Scintillation Detectors Used for Range Monitoring in Proton Radiotherapy


Effect of Strong Load Variations on Gain and Timing of CeBr3 Scintillation Detectors Used for Range Monitoring in Proton Radiotherapy

Pausch, G.; Mueller, C.; Berthold, J.; Enghardt, W.; Kuechler, M.; Roemer, K.; Stein, J.; Straessner, A.; Wagner, A.; Werner, T.; Wolf, A.; Koegler, T.

CeBr3 scintillation detectors with light readout by photomultiplier tubes (PMT) have been used for prompt-gamma measurements in proton radiotherapy aiming at treatment verification by Prompt Gamma Timing (PGT) or Prompt Gamma Spectroscopy (PGS). Such treatments are usually structured in distinct beam spots grouped in several mono-energy layers, separated by breaks of few-seconds duration for beam energy switching. This causes a multitude of extreme load steps during delivery of a single treatment field. The paper presents preliminary results of two experiments exploring effects of such load steps on gain and timing of PGT detection units as developed for use in clinical treatments. Multiple units, consisting of scintillation detector (2”×1…2” CeBr3 crystal coupled to Hamamatsu R13089 or R13089-100 photomultiplier) and a plugged-on high-throughput digital spectrometer (U100 by Target Systemelektronik) that also provides well stabilized dynode voltages for the PMT, were exposed to prompt gamma radiation produced by 225 MeV protons in a plexiglass (PMMA) layer, or to bremsstrahlung produced by 13 MeV electrons. Beam shots of 3-5 s duration and varied intensity provoked load steps from background up to the Mcps region and back, and allowed analyzing the immediate and the retarded response of PMT gain and timing. Indeed we observed a noticeable change of the PMT transit time with the detector load, indicating that space charge effects are involved. The scaling of gain turns with the mean anode current supports this hypothesis. As long as the mean anode current is in a ‘reasonable’ operating range, gain and timing drifts of given detectors are well correlated, at least in the stationary case. The observed load-induced timing shifts are as large as 100 ps and would seriously disturb PGT measurements in a treatment, but could eventually be corrected for by tracking the PMT gain. In treatments, this could be done by tracking the ubiquitous 511 keV annihilation peak.

Keywords: Scintillation detector; gamma spectroscopy; photomultiplier; load effect; count rate; gain; timing; stabilization; particle therapy; proton therapy; treatment verification; range verification; prompt gamma

Involved research facilities

Related publications

  • Lecture (Conference)
    2018 IEEE Nuclear Science Symposium and Medical Imaging Conference, 10.-14.11.2018, Sydney, Australia

Permalink: https://www.hzdr.de/publications/Publ-27439