Magnetic coupling effects in curvilinear nanomagnets


Magnetic coupling effects in curvilinear nanomagnets

Makarov, D.; Volkov, O.; Kakay, A.; Fassbender, J.

While conventionally magnetic films and structures are fabricated on flat surfaces, the topology of curved surfaces has only recently started to be explored and leads to new fundamental physics as well as applied device ideas [1]. In particular, novel effects occur when the magnetization is modulated by curvature providing a new degree of freedom that leads to new magnetization configurations and is predicted to have major implications on the spin dynamics due to topological constraints [2].
Advances in this novel field solely rely on the understanding of the fundamentals behind the modifications of magnetic responses of 3D-curved magnetic thin films. The lack of an inversion symmetry and the emergence of a curvature induced effective anisotropy and Dzyaloshinskii-Moriya interaction are characteristic of curved surfaces, leading to curvature-driven magnetochiral effects and topologically induced magnetization patterning. In addition to these rich physics, the application potential of 3D-shaped objects is currently being explored as mechanically reshapeable magnetic field sensorics [3], spin-wave filters and high-speed racetrack memory devices. The fundamentals as well as application relevant aspects of curvilinear nanomagnets will be covered in this presentation.

[1] R. Streubel, D. Makarov et al., J. Phys. D: Appl. Phys. 49, 363001 (2016).
[2] D. Sander, D. Makarov et al., J. Phys. D: Appl. Phys. 50, 363001 (2017).
[3] D. Makarov et al., Appl. Phys. Rev. 3, 011101 (2016).

Keywords: curvature effects; magnetic thin films

Involved research facilities

Related publications

  • Poster
    Joint European Magnetic Symposia 2018, 03.-07.09.2018, Mainz, Germany

Permalink: https://www.hzdr.de/publications/Publ-27542