High energy resolution X-ray spectroscopy of actinide nanomaterials


High energy resolution X-ray spectroscopy of actinide nanomaterials

Kvashnina, K. O.

This contribution will provide a brief overview of applications of advanced X-ray spectroscopic techniques that take advantage of the resonant inelastic X-ray scattering (RIXS) in the hard and tender X-ray range and have recently become available for studying the electronic structure of actinides at the synchrotron facilities. We will focus on the high-energy-resolution fluorescence detection (HERFD) X-ray absorption near edge structure (XANES) and RIXS spectroscopies at the U, Th and Pu L3 edges of actinide (hydroxo-) oxide nanoparticles [1–4]. The experiments were performed at the Rossendorf Beamline (ROBL) at the ESRF, dedicated to the actinides science, where we recently installed a novel X-ray emission spectrometer [5] with ground-breaking detection limits. We will show how the detail information about local and electronic structure of actinide nanomaterials can be obtained, including information on the electron-electron interactions, hybridization between molecular orbitals, the nature of their chemical bonding, and the occupation and the degree of the f-electron localization.
The experimental spectral features has been analyzed using a number of theoretical methods, such as the full multiple scattering (FEFF) and ab-initio finite difference method near-edge structure (FDMNES) codes. In connection with presented results, the capabilities and limitations of the experimental techniques and theoretical methods will be discussed

Involved research facilities

Related publications

  • Lecture (Conference)
    ATAS Workshop, 06.-09.11.2018, Nice, France

Permalink: https://www.hzdr.de/publications/Publ-27703