Measurement of interfacial wave dynamics in orbitally shaken cylindrical containers using ultrasound pulse-echo techniques


Measurement of interfacial wave dynamics in orbitally shaken cylindrical containers using ultrasound pulse-echo techniques

Horstmann, G. M.; Wylega, M.; Weier, T.

We present a novel experiment on interfacial wave dynamics in orbitally shaken cylindrical vessels containing two- and three fluid layers. The experiment was designed as a hydrodynamical model for both aluminum reduction cells and liquid metal batteries to gain new insights into the rotational wave motion driven by the metal pad roll instability. Different options are presented to realize stable and measurable multi-layer stratifications. We introduce a new acoustic measurement procedure allowing to reconstruct wave amplitudes also in opaque liquids by tracking ultrasonic pulse echoes reflected on the interfaces. Measurements of resonance curves and phase shifts were conducted for varying interface positions. A strong influence of the top and bottom walls were observed, considerably reducing wave amplitudes and eigenfrequencies, when the interface is getting close. Finally, measured resonance curves were successfully compared with an existing forced wave theory that we extended to two-layer interfacial waves.
The comparison stresses the importance to carefully control the boundary condition at the contact line.

Keywords: Interfacial Waves; Liquid Metal Batteries; Aluminum Reduction Cells

Downloads

Permalink: https://www.hzdr.de/publications/Publ-27772