SRF gun development at DESY


SRF gun development at DESY

Vogel, E.; Sekutowicz, J.; Barbanotti, S.; Hartl, I.; Jensch, K.; Klinke, D.; Kostin, D.; Moeller, W.-D.; Schmoekel, M.; Sievers, S.; Steinhau-Kuehl, N.; Sulimov, A.; Thie, J.-H.; van der Horst, B.; Weise, H.; Winkelmann, L.; Smedley, J.; Teichert, J.; Wiencek, M.; Lorkiewicz, J. A.; Nietubyc, R.

A future upgrade of the European XFEL (E-XFEL) foresees an additional CW operation mode, which will increase the flexibility in the photon beam time structure [1, 2, 3]. One of the challenges of this operational mode is the need for a CW operating photo injector. We believe that using an SRF gun is the preferred approach as the beam parameters of normal conducting pulsed guns can be potentially met by SRF guns operating CW. For more than a decade DESY, in collaboration with TJNAF, NCBJ, BNL, HZB and HZDR, has performed R&D to develop an all superconducting RF gun with a lead cathode. In the frame of E-XFEL CW upgrade feasibility studies, the SRF-gun R&D program gained more attention and support. Within the next few years we would like to demonstrate the performance of the all superconducting injector required for the E-XFEL upgrade. The selected approach offers advantages w.r.t. the cleanliness of the superconducting surface, but requires a complete disassembly of a cryostat and stripping the gun cavity in a clean room to exchange the cathode. Thus it is practical only when the life time of the cathode is at least several months. In this paper we present the actual status of the R&D program, next steps and the longer term plans.

Keywords: superconducting RF gun; photo injector; lead cathode; electron source

Involved research facilities

Related publications

  • Poster
    29th Linear Accelerator Conference-LINAC18, 16.-21.09.2018, Beijing, China
  • Open Access Logo Contribution to proceedings
    29th Linear Accelerator Conference-LINAC18, 16.-21.09.2018, Beijing, China
    Proc. of 29th Linear Accelerator Conference-LINAC18, Genf: JACoW

Permalink: https://www.hzdr.de/publications/Publ-27933