Broadband Terahertz Detection With Zero-Bias Field-Effect Transistors Between 100 GHz and 11.8 THz With a Noise Equivalent Power of 250 pW/√Hz at 0.6 THz


Broadband Terahertz Detection With Zero-Bias Field-Effect Transistors Between 100 GHz and 11.8 THz With a Noise Equivalent Power of 250 pW/√Hz at 0.6 THz

Regensburger, S.; Mukherjee, A. K.; Schönhuber, S.; Kainz, M. A.; Winnerl, S.; Klopf, J. M.; Lu, H.; Gossard, A. C.; Unterrainer, K.; Preu, S.

We demonstrate UV contact lithographically fabricated III–V field-effect transistors (FETs) examined over a bandwidth of 100 GHz–11.8 THz. The zero-bias device reaches a noise equivalent power as low as 250 pW/√Hz at 0.6 THz, which then increases as f^4 at higher frequencies. The responsivity is modeled by a simple equivalent circuit, showing good agreement over the frequency range of two decades. The FETs have been characterized using a photomixer, a quantum cascade laser, and a free-electron laser, proving the versatility and large applicability of the detection concept.

Keywords: THz detection; broadband detection; field-effect transistor

Involved research facilities

Related publications

Downloads

Permalink: https://www.hzdr.de/publications/Publ-27949