Next-Generation Simulations for XFEL-Plasma Interactions with Solid Density Targets with PIConGPU - Solutions for Predictive 3D Modeling


Next-Generation Simulations for XFEL-Plasma Interactions with Solid Density Targets with PIConGPU - Solutions for Predictive 3D Modeling

Huebl, A.; Widera, R.; Pausch, R.; Garten, M.; Burau, H.; Koller, F.; Kluge, T.; Vorberger, J.; Debus, A.; Cowan, T.; Schramm, U.; Chung, H.-K.; Bussmann, M.

PIConGPU reportedly is the fastest particle-in-cell code in the world with respect to sustained Flop/s. Written in performance-portable, single-source C++ we constantly push the envelope towards Exascale laser-plasma modeling. However, solving previously week-long simulation tasks in a few hours with a speedy framework is only the beginning.

This talk will present the architecture and recent additions driving PIConGPU. As we speak, we run on the fastest machines and the community approaches a new generation of TOP10 clusters. Within those, many-core computing architectures and severe limitations in available I/O bandwidth demand fundamental rethinking of established modeling workflows towards in situ-processing.

We present our ready-to-use open-source solutions and address scientific repeatability, data-reduction in I/O, predictability and new atomic modeling for XFEL pump-probe experiments.

Keywords: PIConGPU; exascale; xfel; hed; 3D simulations; laser-ion acceleration; lpa

  • Lecture (Conference)
    3rd European Advanced Accelerator Concepts Workshop, 24.-30.09.2017, Elba, Italien

Permalink: https://www.hzdr.de/publications/Publ-27957