Flow control in the model of a continuous caster by using Contactless Inductive Flow Tomography


Flow control in the model of a continuous caster by using Contactless Inductive Flow Tomography

Glavinic, I.; Abouelazayem, S.; Ratajczak, M.; Schurmann, D.; Eckert, S.; Stefani, F.; Hlava, J.; Wondrak, T.

The global flow pattern of liquid metal in the slab mold of a continuous caster is difficult to control, as it cannot be measured in real-time by conventional methods. Contactless inductive flow tomography (CIFT) can easily provide real-time information about the flow structure (double or single roll) and the angle of the jet coming out of the submerged entry nozzle (SEN) just from the raw sensor data. Furthermore, by solving the underlying linear inverse problem, the full velocity field can be reconstructed. This paper discusses the possibility of applying CIFT for flow pattern recognition in continuous casting, which is then used for setting an electromagnetic brake in order to control the angle of the fluid jet. The control loop will be implemented and developed for the Mini-LIMMCAST model of a continuous caster at Helmholtz-Zentrum Dresden-Rossendorf (HZDR).

Keywords: continuous casting; flow control; inductive measurement techniques; electromagnetic brake

  • Contribution to proceedings
    TMS2019 Annual Meeting & Exhibition, 10.03.2019, San Antonio, Texas, United States of America
  • Lecture (Conference)
    TMS2019 Annual Meeting & Exhibition, 11.03.2019, San Antonio, Texas, United States of America

Permalink: https://www.hzdr.de/publications/Publ-28126