Implementation of CT-based attenuation maps of RT positioning devices in PET/MRI - online vs offline


Implementation of CT-based attenuation maps of RT positioning devices in PET/MRI - online vs offline

Täubert, L.; Pfaffenberger, A.; Berker, Y.; Beuthien-Baumann, B.; Hoffmann, A. L.; Troost, E. G. C.; Koerber, S. A.; Kachelrieß, M.; Gillmann, C.

Purpose or Objective
Integrating PET/MR hybrid imaging into radiation treatment (RT) planning has great potential to improve tumor delineation and dose prescription. Since these scans must be acquired under treatment conditions, attenuation correction of RT positioning devices is necessary. Attenuation maps can be implemented either online (directly at the PET/MRI scanner) or offline (at another PC). In this study, we compare both methods and assess their impact on PET image quality using a CT-based user-generated attenuation map of an RT table overlay.
Material and Methods
CT images of an RT table overlay (in-house construction) were acquired on a stand-alone CT (Somatom Definition Flash, Siemens Healthineers, Erlangen, Germany) at 120 kV and 360 mAs. Based on the CT images, an attenuation map of the RT table overlay was calculated via the bilinear approach [1]. The RT table overlay was then mounted onto the patient table of the PET/MRI (Biograph mMR, Siemens Healthineers) and two sets of PET-measurements were taken using an active 68Ge phantom (32 MBq, 10 min scan time). The phantom was scanned with the RT table overlay (RT scan), and without the RT table overlay (reference scan). PET reconstructions of the phantom scans were performed online at the PET/MRI scanner and offline using the e7tools (Version VA20, Siemens Healthineers) with identical reconstruction parameters. For the PET-reconstructions of the RT scan, the attenuation map of the RT table overlay was implemented. Attenuation correction accuracy was evaluated by comparing PET activities between RT and reference scans in 10 ROIs placed every 10 slices along the phantom in longitudinal direction, both for the online and the offline reconstruction methods.
Results
The RT table overlay attenuation map was successfully added to the hardware attenuation maps produced online and offline. Table 1 compares measured PET activities. For the online reconstruction, a mean percentage difference of 0.7% was found between the reference and the RT scan. For the offline reconstruction, a mean percentage difference of 1.4% was found. A systematic difference of around 500 Bq/ml was found between the online and offline reconstructions.
Conclusion
For the integration of PET/MRI in RT planning, attenuation correction of RT positioning devices is viable. The online reconstruction seems to be more accurate, but it has the disadvantage that the attenuation map must be removed from the system after every RT measurement to prevent an incorrect reconstruction of patient data that were not scanned in RT setup. Alternatively, offline reconstruction can be implemented at any PC via e7tools, and the reconstruction could be automated, thereby diminishing human error. The cause of the systematic signal difference in online and offline reconstruction needs to be investigated further.

Permalink: https://www.hzdr.de/publications/Publ-28176