Quantitative Modelling and Assessment for Circular Economy Systems


Quantitative Modelling and Assessment for Circular Economy Systems

Bartie, N.; Fröhling, M.; Reuter, M. A.

Minerals and metals required to produce renewables and everyday electric and electronic technologies are extracted from both geological (primary) and urban (secondary, recycling) mines. Extraction and recycling process complexity is often neglected in impact assessments. Treatment of interconnected components in isolation is physically impossible, and should be reflected in impact assessments. Claims of completely closed loops neglect irreversible losses governed by the thermodynamics. Aggregation of complex processes into average “black boxes” reduces resolution, removing the ability to allocate impacts and optimise circular economy systems that are often geographically and temporally dispersed. We aim to expand and integrate existing frameworks, models and tools, including fundamental thermochemistry, process simulation, life cycle inventory and impact assessment, costing and thermoeconomics, and to utilise multi-criteria optimisation to conduct holistic assessments and optimisation of resource efficiency, losses and impacts of entire circular economies at high resolution. This will benefit stakeholders from operational through to policy-making levels.

Keywords: Life cycle; Recycling; Metals; Exergy; Thermodynamics; Holistic analysis

  • Poster
    Sustainable Minerals 2018, 14.-15.06.2018, Windhoek, Namibia

Permalink: https://www.hzdr.de/publications/Publ-28194