Bacillus safensis JG-B5T affects the fate of selenium by extracellular production of colloidally less stable nanoparticles


Bacillus safensis JG-B5T affects the fate of selenium by extracellular production of colloidally less stable nanoparticles

Fischer, S.; Krause, T.; Lederer, F.; Merroun, M. L.; Shevchenko, A.; Hübner, R.; Stumpf, T.; Jordan, N.; Jain, R.

Bacteria strain Bacillus safensis JG-B5T is an obligate aerobic microorganism isolated from uranium mining waste pile. The role played by this microorganism in the transport of selenium is poorly understood. This study demonstrated that B. safensis JG-B5T can reduce 70 % of 2.5 mM selenite whereas selenate reduction was not observed. Formation of the resulting biogenic elemental selenium nanoparticles (BioSeNPs) occurred exclusively extracellularly. The ζ-potential of the produced BioSeNPs varied from −44.2 (±0.2) mV to −10.6 (±3.3) mV when Na+:Se ratio was varied from 0 to 0.8 (mM:mM), suggesting a lower colloidal stability. Further experiments in two-chamber reactors and transmission electron microscopy revealed that direct cell contact is essential for selenite reduction by B. safensis JG-B5T. The selenite reduction is likely primarily mediated through membrane-associated proteins, like succinate dehydrogenase as revealed by genome and proteomics analysis. Altogether, this study showed that aerobic bacteria B. safensis JG-B5T is involved in decreasing the environmental bioavailability and toxicity of selenium by membrane protein-mediated reduction of selenite oxyanions and formation of extracellular BioSeNPs with low colloidal stability.

Keywords: Obligate aerobic; two-chamber reactor; proteomics; membrane-associated proteins; selenite

Permalink: https://www.hzdr.de/publications/Publ-29000