Fabrication and temperature-dependent electrical characterization of a C-shape nanowire patterned by a DNA origami


Fabrication and temperature-dependent electrical characterization of a C-shape nanowire patterned by a DNA origami

Bayrak, T.; Martinez-Reyes, A.; Ruiz-Arce, D. D.; Kelling, J.; Samano, E. C.; Erbe, A.

We introduce a method based on directed molecular self-assembly to manufacture C-shape gold nanowires which can serve as components of a metamaterial based on split-ring resonators. To this end, gold NPs are arranged in the desired shape on a DNA-origami template and enhanced to form a continuous wire through electroless deposition. C-shape nanowires with a size below 150nm on a SiO2/Si substrate are contacted with gold electrodes by means of electron beam lithography. Charge transport measurements of the nanowires show hopping, thermionic and tunneling transports at different temperatures in the 4.2K to 293K range. The different transport mechanisms indicated that the C-shape wires consist of metallic parts which are weakly coupled along the wire.

Involved research facilities

Related publications

Permalink: https://www.hzdr.de/publications/Publ-29016