Application of computational fluid dynamics codes for nuclear power plant design


Application of computational fluid dynamics codes for nuclear power plant design

Krause, M.; Smith, B.; Höhne, T.; In, W. K.

Computational Fluid Dynamics (CFD) codes have reached a level of maturity, at least for single-phase applications, to be utilized in the design process of Nuclear Power Plant (NPP) components, such that advanced NPPs over the past years have increasingly utilized CFD codes in their design. A recently completed Cooperative Research Project (CRP) addressed the application of CFD codes to the process of optimizing the design of components in Pressurized Water-cooled Reactors (PWRs). Following several initiatives within the IAEA where CFD codes have been applied to situations of interest in nuclear reactor technology, this CRP aimed to contribute to a consistent application of CFD codes by establishing a common platform to assess their capabilities and level of qualification.

Eleven participant organizations from nine Member States performed simulations against four “CFD-grade” experiments performed to investigate key phenomena for CFD simulations. Two are based on test data from the ROCOM (ROssendorf COolant Mixing) facility at HZDR in Germany, and another two are based on rod-bundle experiments in the OFEL (Omni Flow Experimental Loop) facility at KAERI in Korea.

This paper outlines the objectives of the CRP, provides a description of the test facilities and experiments, and discusses selected results obtained for the four above benchmark exercises.

Keywords: Computational Fluid Dynamics; Reactor Design; CFD Benchmark

  • Lecture (Conference)
    18th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-18), 18.-23.08.2019, Portland, USA
  • Contribution to proceedings
    18th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-18), 18.-23.08.2019, Portland, USA

Permalink: https://www.hzdr.de/publications/Publ-29046