The influence of orifice types on the flow structure of a bubble-driven liquid-metal flow in a horizontal magnetic field


The influence of orifice types on the flow structure of a bubble-driven liquid-metal flow in a horizontal magnetic field

Richter, T.; Wondrak, T.; Eckert, K.; Eckert, S.; Odenbach, S.

Bubble plumes play an important role in metallurgical applications in order to stir and refine melts. Static electromagnetic fields allow a contactless control of those bubble plumes. However, for a tailored control the effects of the magnetic field to the bubble motion are important.
It is well known, that a bubble plume rising in a bulk of liquid metal has an axially symmetric shape. But the motion becomes asymmetric, when a static magnetic field (B) is applied in horizontal direction to the liquid metal. The direction of the flow parallel to B is upward, while the direction of the flow perpendicular to B is downward close to the plume.
Measurements of Zhang et al. of a bubble plume in the liquid metal GaInSn, emerging from a single orifice in a cylindrical vessel by the usage of the ultrasound Doppler velocimetry (UDV), confirmed this asymmetric motion. They observed traveling vortex structures in the direction perpendicular to B for moderate Hartmann numbers (Ha). This vortex structure became frozen, when high Ha were reached.
The focal point of this paper is the measurement of the bubble features in a similar container instead of measuring the flow of the liquid metal. The ultrasound transit time technique (UTTT) is employed, which was previously utilized to detect and analyze the motion of single bubbles rising in GaInSn. In comparison to the previous setup, a square vessel instead of round one is used and a sharp injection needle instead of a polished one was placed at the bottom of the vessel. During these new measurements, almost contradictory results are obtained: for small Ha numbers static vortex structures, which were deduced from the bubble motion, were observed, while traveling vortices were measured, when higher Ha were reached. The cause of this discrepancy is presumably the sharp orifice in the new setup, because the different cross section of the tank would rarely influence the motion.
We want to analyze the influence of the orifice type, by the comparison of two different shaped orifices, on the flow behavior in a new measurement campaign, where the bubble motion and the flow structure are detected by UTTT and UDV.

Keywords: ultrasound transit time technique; liquid metal; bubble plume

  • Lecture (Conference)
    11th PAMIR international conference fundamental and applied MHD, 01.-05.07.2019, Reims, France
  • Contribution to proceedings
    11th PAMIR International Conference Fundamental and Applied MHD, 01.-05.07.2019, Reims, France
    The influence of orifice types on the flow structure of a bubble-driven liquid-metal flow in a horizontal magnetic field

Permalink: https://www.hzdr.de/publications/Publ-29077