Optical properties of ZnSxTe1-x synthesized by sulfur implantation


Optical properties of ZnSxTe1-x synthesized by sulfur implantation

Zhang, X.; Xu, M.; Li, Q.; Wang, M.; Akhmadaliev, S.; Zhou, S.; Wu, Y.; Guo, B.

ZnSxTe1-x thin films were prepared by sulfur implantation into ZnTe grown by molecular beam epitaxy and subsequent pulsed laser melting. The chemical composition and layer thickness of the ZnSxTe1-x layer have been analyzed based on Rutherford backscattering spectrometry. Raman and photoluminescence spectroscopies were employed to reveal the optical properties of the ZnSxTe1-x layer. Raman spectra exhibit a redshift of the longitudinal optical photon modes with increasing sulfur concentration. The room temperature photoluminescence measurement indicates the appearance of the sulfur induced energy state in the bandgap.

Involved research facilities

Related publications

Permalink: https://www.hzdr.de/publications/Publ-29158