Synthesis and in vitro evaluation of 8-pyridinyl substituted benzo[e]imidazo[2,1-c][1,2,4]triazines as phosphodiesterase 2A (PDE2A) inhibitors


Synthesis and in vitro evaluation of 8-pyridinyl substituted benzo[e]imidazo[2,1-c][1,2,4]triazines as phosphodiesterase 2A (PDE2A) inhibitors

Ritawidya, R.; Ludwig, F.-A.; Briel, D.; Brust, P.; Scheunemann, M.

Phosphodiesterase 2A (PDE2A) is highly expressed in distinct areas of the brain which are known to be related to neuropsychiatric diseases. The development of suitable PDE2A tracers for Positron Emission Tomography (PET) would permit the in vivo imaging of the PDE2A and evaluation of disease- mediated alterations of its expression. A series of novel fluorinated PDE2A inhibitors on the basis of a benzoimidazotriazine (BIT) scaffold was prepared leading to a promising inhibitor for further development of a PDE2A PET imaging agent. BIT derivatives (BIT1-9) were obtained by a seven-step synthesis route and their inhibitory potency towards PDE2A and selectivity over other PDEs have been evaluated. BIT1 demonstrated much higher inhibition than other BIT derivatives (82.9% inhibition of PDE2A at 10 nM). BIT1 displayed an IC50 for PDE2A of 3.33 nM with 16-fold selectivity over PDE10A. This finding revealed that a derivative bearing both a 2-fluoro-pyridin-4-yl and 2-chloro-5-methoxy-phenyl unit at 8- and 1-position, respectively, appeared to be the most potent inhibitor. In vitro studies of BIT1 using mouse liver microsomes (MLM) disclosed BIT1 as a suitable ligand for 18F-labeling. Nevertheless, future in vivo metabolism studies are required.

Keywords: Phosphodiesterase 2A (PDE2A); positron emission tomography (PET); benzoimidazotriazine (BIT); fluorinated; mouse liver microsomes (MLM)

Permalink: https://www.hzdr.de/publications/Publ-29224