Damage accumulation and implanted Gd and Au position in a- and c-plane GaN


Damage accumulation and implanted Gd and Au position in a- and c-plane GaN

Macková, A.; Malinský, P.; Jagerová, A.; Mikšová, R.; Sofer, Z.; Klímová, K.; Mikulics, M.; Böttger, R.; Akhmadaliev, S.; Oswald, J.

(0001) c-plane and (11−20) a-plane GaN epitaxial layers were implanted with 400 keV Au+ and Gd+ ions using ion implantation fluences of 5×1014, 1×1015 and 5×1015 cm-2. Rutherford Back-Scattering spectrometry in channelling mode (RBS/C) was used to follow the dopant depth profiles and the introduced disorder; the angular dependence of the backscattered ions (angular scans) in c- and a-plane GaN was measured to get insight into structural modification and dopant position in various crystallographic orientations. Defect-accumulation depth profiles exhibited differences for a- and c-plane GaN, with a-plane showing significantly lower accumulated disorder in the buried layer, accompanied by the shift of the maximum damage accumulation into the deeper layer with respect to the theoretical prediction, than c-plane GaN. Angular scans showed channelling preservation in as-implanted samples and better channelling recovery in the annealed a-plane GaN compared to cplane GaN. The angular scan widths were simulated by FLUX code as well as the half-width modifications of angular scans were discussed in connection to the damage accumulation. Photoluminescence measurement followed in detail yellow band and band edge luminescence decline after the implantation and the recovery of luminescence spectra features after annealing.

Keywords: Implanted (0001) and (11–20) GaN; Damage accumulation asymmetry in GaN; Ion implantation in semiconductors; RBS channelling; Damage-depth profiling

Involved research facilities

Related publications

Permalink: https://www.hzdr.de/publications/Publ-29240