Comparative effect of trivalent lanthanides and actinides on a rat kidney cell line


Comparative effect of trivalent lanthanides and actinides on a rat kidney cell line

Heller, A.; Acker, M.; Barkleit, A.; Bok, F.; Wober, J.

Exposure to trivalent lanthanides (Ln) and actinides (An) poses a serious health risk to animals and humans. Since both Lan and An are mainly excreted with the urine, we investigated the effect of La, Ce, Eu, and Yb (as representatives of Ln) as well as Am (as representative of An) exposure on a rat renal cell line (NRK-52E) for 8, 24, and 48 h in vitro. Cell viability studies using the XXT assay and fluorescence microscopic investigations were combined with solubility and speciation studies using ICP-MS and time-resolved laser-induced fluorescence spectroscopy (TRLFS). Thermodynamic modeling was applied to predict the speciation of Ln and Am in cell culture medium.
All Ln show a concentration- and time-dependent effect on NRK-52E cells with Ce being the most potent element. Effective Ln concentrations reducing the cell viability to 50 % (EC50 values) range from 340 µM for Ce to 1.1 mM for Eu. In general, light and heavy Ln seem to exhibit a greater effect than middle Ln.
In cell culture medium with 10 % fetal bovine serum (FBS), the Ln are completely soluble and complexed with proteins from FBS. Ln speciation is time-independent. Comparative experiment with Am are ongoing and will reveal analogies and differences in the effect of trivalent Ln and An on rat kidney cells.
The results of this study underline the importance of combining biological, chemical, and spectroscopic methods in studying the effect of Ln and An on cells in vitro and may contribute to the improvement of the current risk assessment for Ln in the human body. Furthermore, they demonstrate that Ln seem to have no effect on rat renal cells in vitro at environmental trace concentrations. Nevertheless, especially Ce has the potential for harmful effects at elevated concentrations observed in mining and industrial areas.

References:

[1] A. Heller, Ecotox. Environ. Safe. 2019, 173.

  • Lecture (Conference)
    GDCh-Jahrestagung der Fachgruppe Nuklearchemie 2019, 25.-27.09.2019, Dresden, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-29378