Investigations on potential methods for the long-term monitoring of the state of fuel elements in dry storage casks: recent results


Investigations on potential methods for the long-term monitoring of the state of fuel elements in dry storage casks: recent results

Hampel, U.; Wagner, M.; Schmidt, S.; Fiß, D.; Reinicke, S.; Kratzsch, A.

Until a repository is available in deep geological formations, there is a need in Germany for the safe interim storage of spent fuel elements at the power plant sites. It is assumed that considerable periods of more than 50 years will have to be taken into account. Spent fuel elements are stored in Germany in transport and storage casks of the CASTOR type.
A material-scientific question currently being investigated in depth internationally concerns the long-term integrity of the fuel rod cladding tubes during dry storage and thus the safety during transport to the final repository and during secondary packaging. The absorption of hydrogen in the cladding tube during reactor operation leads to the precipitation of hydrides. If the cladding tube temperature increases during reloading or dry storage, a radial reorientation of the hydrides is conceivable due to the tangential stresses caused by the internal rod pressure. This type of hydride arrangement considerably reduces the brittle fracture toughness. A long-term cladding tube failure is conceivable due to a long-term increase in the internal rod pressure (production of gaseous fission products) and a long-term decrease in the cladding tube temperature (reduction of brittle fracture toughness).
Due to the existing uncertainties with regard to the concrete physical processes, the question arises as to the possibility of monitoring the cask contents. Invasive procedures, such as internal probes, are mainly ruled out for reasons of licensing. On the other hand, the massive construction of the containers with a wall thickness of at least 47 cm on all sides limits the spectrum of non-invasive testing and condition monitoring procedures that can be used. Within the DCS-Monitor project, four non-invasive measuring methods are investigated with regard to their suitability for the condition monitoring of the cask inventory by simulations and experiments. For this purpose, damage scenarios of the cask inventory were assumed in a CASTOR V/19, which were identified on the basis of investigations on damage mechanisms. In the following, the recent investigation results of the project are presented.

  • Contribution to proceedings
    3rd Workshop on Safety of Extended Dry Storage of Spent Nuclear Fuel, 05.-07.06.2019, Garching, Deutschland
  • Lecture (Conference)
    3rd Workshop on Safety of Extended Dry Storage of Spent Nuclear Fuel, 05.-07.06.2019, Garching, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-29389