Investigation of Bubble Plume Oscillations by Euler-Euler Simulation


Investigation of Bubble Plume Oscillations by Euler-Euler Simulation

Fleck, S.; Rzehak, R.

For practical applications the Euler-Euler two-fluid model relies on suitable closure relations describing interfacial exchange processes. An ongoing effort at HZDR has led to a validated set of closures for adiabatic bubbly flows that is applicable under a rather broad range of conditions including flows in pipes and bubble columns. Up to now, however, only flows with stationary mean values have been considered. The present contribution extends the model validation to dynamic flow phenomena by considering a periodically oscillating bubble plume. Consequently, the turbulence model then runs in URANS mode. Literature data for a partially aerated flat rectangular bubble column are used for comparison. In particular, results for the plume oscillation period show good agreement between simulation and experiment.

Keywords: bubble columns; dispersed gas liquid multiphase flow; Euler-Euler two fluid model; closure relations; CFD simulation; model validation

  • Open Access Logo Chemical Engineering Science 207(2019), 853-861
    DOI: 10.1016/j.ces.2019.07.011
    Cited 19 times in Scopus
  • Lecture (Conference)
    Jahrestreffen der ProcessNet-Fachgruppe „Computational Fluid Dynamics“, 19.-20.03.2019, Frankfirt/Main, Deutschland

Downloads

Permalink: https://www.hzdr.de/publications/Publ-29428