Interlayer excitons in van-der-Waals heterostructures: MoS2 on GaSe


Interlayer excitons in van-der-Waals heterostructures: MoS2 on GaSe

Wagner, C.; Rahaman, M.; Zahn, D. R. T.; Gemming, S.

Hybrid van-der-Waals heterostructures of two-dimensional nanomaterials are a vibrant field of study: The (weak) electronic interaction between two layers is often reasonably described by a perturbation of the physical effects of the isolated layers, such as electrostatic doping and increased screening of intralayer excitons. However, it turns out that this picture of the weak interaction is not exhaustive in terms of all optical properties: the formation of bound excitons from electrons of one layer and holes from the other layer yields the formation of interlayer excitons. These mixed states are measured experimentally by photoluminescence and photocurrents and predicted by theory. Examples are of MoS2 or MoSe2 on WSe2, MoS2 or GaSe due to type-II band alignment [1-3].
The conditions for the formation of interlayer excitons are elucidated from a first-principles point of view. For this, first-principles studies of a minimal test system of MoS2 on GaSe is conducted [1].
This work envisions to predict the interlayer states as a function of the heterostack in order to specifically tailor efficient photon absorption.

Keywords: 2D materials; DFT; Bethe-Salpeter; Density-functional perturbation theory; MoS2; GaSe; bilayer; van-der-Waals heterostructure; interlayer exciton

  • Lecture (Conference)
    Chem2DMat, 03.-06.09.2019, Dresden, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-29594