THz relaxation dynamics and nonlinear optics in graphene


THz relaxation dynamics and nonlinear optics in graphene

Helm, M.

Graphene, because of its peculiar linear band structure, shows some fascinating effects in the relaxation processes of excited electrons. Due to the zero band gap, many of those processes are best investigated at low energies, in the THz region. By linearly polarized pump-probe measurements we show that fast thermalization occurs only with respect to energy, but not to momentum, i.e. the electron distribution remains anisotropic for more than 5 ps (Phys. Rev. Lett. 117, 087401 (2016)). Applying a magnetic field splits the bands into non-equidistant Landau levels. This gives rise to a situation, where strong pumping of a Landau level actually leads to its depletion, due to strong Auger type electron-electron scattering (Nat. Phys. 11, 75 (2015)). In the same system, a large, resonant third-order optical nonlinearity is demonstrated via degenerate four-wave mixing (Nano Lett. 17, 2184 (2017)). All experiments were performed with a THz free-electron laser at frequencies around 20 THz, in collaboration with M. Mittendorff, J. König-Otto, S. Winnerl, A. Pashkin H. Schneider, with theory support by F. Wendler, T. Winzer, F. Kadi, E. Malic, A. Knorr, Y. Wang, A. Belyanin, and samples from W. de Heer and C. Berger.

Keywords: free electron laser; graphene; terahertz; relaxation; nonlinear optics

Involved research facilities

Related publications

  • Invited lecture (Conferences)
    2D Materials 2019, 30.09.-04.10.2019, Sochi, Russia

Permalink: https://www.hzdr.de/publications/Publ-29745