Ultrasmall silicon nanoparticles as a promising platform for multimodal imaging


Ultrasmall silicon nanoparticles as a promising platform for multimodal imaging

Singh, G.; Ddungu, J. L. Z.; Licciardello, N.; Bergmann, R.; de Cola, L.; Stephan, H.

Bimodal systems for nuclear and optical imaging are currently being intensively investigated due to their comparable detection sensitivity and complementary information they provide. In this perspective, we have implemented both modalities on biocompatible ultrasmall silicon nanoparticles (Si NPs). Such nanoparticles are particularly interesting since highly biocompatible, covalent surface functionalization and demonstrated a very fast body clearance. We prepared monodisperse citrate-stabilized Si NPs (2.4 ± 0.5 nm) with more than 40 accessible terminal amino groups per particle and, for the first time, simultaneously a near-infrared dye (IR800-CW) and a radiolabel (64Cu-NOTA = 1,4,7-triazacyclononane-1,4,7-triacetic acid) have been covalently linked to the surface of such Si NPs. The obtained nanomaterials have been fully characterized them by HR-TEM, XPS, UV-Vis and FT-IR spectroscopy. These dual-labelled particles do not exhibit any cytotoxicity in vitro. In vivo studies employing both positron emission tomography (PET) and optical imaging (OI) techniques revealed a rapid renal clearance of dual-labelled Si NPs from mice.

Involved research facilities

  • PET-Center

Downloads

Permalink: https://www.hzdr.de/publications/Publ-29786