Microorganisms for biological remediation of uranium contaminated sites – a microscopic and spectroscopic approach


Microorganisms for biological remediation of uranium contaminated sites – a microscopic and spectroscopic approach

Krawczyk-Bärsch, E.; Gerber, U.; Müller, K.; Rossberg, A.; Merroun, M. L.

Environmental pollution by metals and radionuclides is one of the biggest challenges. For remediation of contaminated environments after activities such as uranium mining and uranium processing, microorganisms could be important due to their ability to immobilize radionuclides and heavy metals. Bioremediation strategies can be improved by a better understanding of binding mechanisms on the molecular level. Therefore, we applied uranium interaction experiments with Acidovorax facilis, an aerobic, Gram-negative Betaproteobacteria, which is commonly found in soils but also in the mine water of uranium mines. For spectroscopic and microscopic studies, kinetic uranium(VI) sorption experiments were performed under aerobic conditions with an Acidovorax facilis strain by adjusting an initial uranium(VI) concentration to 0.1 mM to the batch culture at a neutral pH range. A high-resolution image of the cellular localization of uranium by A. facilis was achieved by using electron microscopy (STEM/HAADF). The elemental distribution analysis of phosphorus and uranium clearly indicates that uranium is entirely present in the cell membrane and only with minor amounts in the poly-phosphate granules (PPGs) during the first hour of incubation (s. Fig.1). By cryo-Time-resolved laser-induced fluorescence spectroscopy (cryo-TRLFS) studies it was shown that the local coordination of uranium species associated with the cells depends upon time contact. Uranium is bound mainly to phosphate groups of lipopolysaccharide [1] at the outer membrane within the first hour. And, that both, phosphoryl and carboxyl functionality groups of LPS and peptidoglycan of A. facilis cells may effectuate the removal of high uranium amounts from solution at 24–48 h of incubation. These results support those obtained by Extended X-ray Absorption Fine Structure Spectroscopy (EXAFS), where a relative short average U-Oeq bond length of 2.35 Å was observed for the uranium(VI) interaction with lipopolysaccharide indicating a binding of the uranium(VI) via organic phosphate groups in a monodentate fashion. Our results clearly demonstrate that A. facilis may play an important role in predicting the transport behaviour of uranium in the environment and that the results will contribute to the improvement of bioremediation methods of uranium-contaminated sites.

Keywords: uranium; sorption; Acidovorax facilis; STEM; EXAFS

Involved research facilities

Related publications

  • Lecture (Conference)
    3rd International Caparica Conference on Polutant Toxic Ions and Molecules, 04.-07.11.2019, Costa da Caparica, Portugal

Permalink: https://www.hzdr.de/publications/Publ-29833