Femtosecond X-ray induced changes of the electronic and magnetic response of solids from electron redistribution


Femtosecond X-ray induced changes of the electronic and magnetic response of solids from electron redistribution

Higley, D.; Reid, A.; Chen, Z.; Le Guyader, L.; Hellwig, O.; Lutman, A.; Liu, T.; Shafer, P.; Chase, T.; Dakovski, G.; Mitra, A.; Yuan, E.; Schlappa, J.; Dürr, H.; Schlotter, W.; Stöhr, J.

Resonant X-ray absorption, where an X-ray photon excites a core electron into an unoccupiedvalence state, is an essential process in many standard X-ray spectroscopies. With increasingX-ray intensity, the X-ray absorption strength is expected to become nonlinear. Here, wereport the onset of such a nonlinearity in the resonant X-ray absorption of magnetic Co/Pdmultilayers near the Co L3edge. The nonlinearity is directly observed through the change ofthe absorption spectrum, which is modified in less than 40 fs within 2 eV of its threshold.This is interpreted as a redistribution of valence electrons near the Fermi level. For ourmagnetic sample this also involves mixing of majority and minority spins, due to sampledemagnetization. Ourfindings reveal that nonlinear X-ray responses of materials may alreadyoccur at relatively low intensities, where the macroscopic sample is not destroyed, providinginsight into ultrafast charge and spin dynamics.

Downloads

Permalink: https://www.hzdr.de/publications/Publ-30055