Investigation of ⁵⁴Fe(n,gamma)⁵⁵Fe and ³⁵Cl(n,gamma)³⁶Cl reaction cross sections at keV energies by Accelerator Mass Spectrometry


Investigation of ⁵⁴Fe(n,gamma)⁵⁵Fe and ³⁵Cl(n,gamma)³⁶Cl reaction cross sections at keV energies by Accelerator Mass Spectrometry

Slavkovská, Z.; Wallner, A.; Reifarth, R.; Pavetich, S.; Brückner, B.; Al-Khasawneh, K.; Merchel, S.; Volknandt, M.; Weigand, M.

Activations with neutrons in the keV energy range were routinely performed at the Karlsruhe Institute of Technology (KIT) in Germany in order to simulate stellar conditions for neutron-capture cross sections. A quasi-Maxwell-Boltzmann neutron spectrum of kT = 25 keV, being of interest for the astrophysical s-process, was produced by the ⁷Li(p,n) reaction utilizing a 1912 keV proton beam at the Karlsruhe Van de Graaff accelerator. Activated samples resulting in long-lived nuclear reaction products with half-lives in the order of yr - 100 Myr were analyzed by Accelerator Mass Spectrometry (AMS). Comparison of this data to cross sections from Time-of-Flight (ToF) measurements showed that the selected AMS data is systematically lower than the ToF data. To investigate this discrepancy, ⁵⁴Fe(n,gamma)⁵⁵Fe and ³⁵Cl(n,gamma)³⁶Cl reaction cross sections were newly measured at the Frankfurt Neutron Source (FRANZ) in Germany. To complement the existing data, an additional neutron activation of ⁵⁴Fe and ³⁵Cl at a proton energy of 2 MeV was performed. The results will give implications for the stellar environment at kT = 90 keV, reaching the yet not experimentally explored high-energy s-process range. AMS measurements of the activated samples are scheduled.

Keywords: AMS; nuclear reactions; s-process

Permalink: https://www.hzdr.de/publications/Publ-30082