Exploring THz-driven dynamics on sub-cycle timescales at the TELBE facility


Exploring THz-driven dynamics on sub-cycle timescales at the TELBE facility

Deinert, J.-C.; Green, B. W.; Ilyakov, I.; Awari, N.; Wang, Z.; Germanskiy, S.; Chen, M.; Bawatna, M.; Gensch, M.; Kovalev, S.

The TELBE Terahertz (THz) facility at Helmholtz-Zentrum Dresden-Rossendorf (HZDR) offers narrowband high-field high-repetition rate THz radiation for driving low-energy excitations in matter in the spectral region between 0.1 THz and 1.5 THz [1]. In combination with our pulse-resolved data acquisition and the numerous available probing techniques based on table-top laser systems, we can resolve THz-driven dynamics with few 10 fs time resolution and high dynamic range of up to 120 dB [2]. This makes TELBE a unique facility for exploring low-energy THz excitations offering (resonant) access to a multitude of fundamental modes, e.g., lattice vibrations, molecular rotations, spin precession and the motion of free electrons [3]. Recently, we demonstrated THz high harmonic generation (HHG) in the model 2D material graphene [4]. Here, the ultrafast collective thermal response of free background electrons near the Dirac point [5] enables very efficient generation of harmonics in the technologically relevant THz frequency range. We further show that the underlying principle of the collective response can be generalized to other 2D and 3D Dirac materials, such as CdAs. The crucial role of doping in graphene can be exploited by, e.g. electrochemical gating, which allows tuning of the HHG efficiency by almost two orders of magnitude. The corresponding setup for phase-resolved nonlinear THz spectroscopy further enables a novel technique: Higgs spectroscopy, which offers new ways for understanding unconventional superconductivity. Using this technique, we recently discovered a new collective mode distinct from the heavily damped Higgs mode in different families of cuprates [6]. Our results establish Higgs spectroscopy as a new approach to uncover interactions directly relevant to superconductivity.
In this contribution, I will also discuss experiments on the selective THz control of magnetic properties in a number of different materials [7], which is enabled by probing techniques, such as Faraday Rotation or MOKE, using the NIR and UV output from our table-top sources.
[1] B. Green et al., Sci. Rep. 6, 22256 (2016)
[2] S. Kovalev et al., Struct. Dyn. 4, 024301 (2017)
[3] T. Kampfrath et al. Nat. Photonics 7, 680–690 (2013)
[4] H. Hafez et al., Nature 561, 507 (2018)
[5] Z. Mics et al., Nature Communications 6, 7655 (2015)
[6] H. Chu et al., arXiv preprint, arXiv:1901.06675 (2019)
[7] S. Kovalev et al., J. Phys. D: Appl. Phys. 51, 114007 (2018)

Keywords: Terahertz; pump-probe; nonlinear dynamics; high harmonic generation; graphene; Dirac materials; superradiance

Involved research facilities

Related publications

  • Invited lecture (Conferences)
    10th International Workshop on Infrared Microscopy and Spectroscopy with Accelerator Based Sources WIRMS 2019, 24.09.2019, Ubatuba, Brasil

Permalink: https://www.hzdr.de/publications/Publ-30085